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Summary. Global relations between RNA sequences and secondary structures are understood as 
mappings from sequence space into shape space. These mappings are investigated by exhaustive folding 
of all GC and AU sequences with chain lengths up to 30. The computed structural data are evaluated 
through exhaustive enumeration and used as an exact reference for testing analytical results derived 
from mathematical models and sampling based on statistical methods. Several new concepts of RNA 
sequence to secondary structure mappings are investigated, among them that of neutral networks (being 
sets of sequences folding into the same structure). Exhaustive enumeration allows to test several 
previously suggested relations: the number of(minimum free energy) secondary structures as a function 
of the chain length as well as the frequency distribution of structures at constant chain length 
(commonly resulting in generalized forms of Zipf's law). 
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Analyse der Beziehungen zwischen RNA-Sequenzen und Sekundiirstrukturen durch vollstiindige Faltung, 
1. Mitt. Faltung, Neutrale Netzwerke 

Zusammenfassung. Die globalen Benziehungen zwischen RNA-Seqnenzen und SekundS.rstrukturen 
werden als Abbildungen aus einem Raum aller Sequenzen in einen Raum aller Strukturen aufgefaBt. 
Diese Abbildungen werden dutch Falten aller biniiren Sequenzen des GC- und AU-Alphabets mit 
Kettenl~ingen bis zu n = 30 untersucht. Die berechneten Strukturdaten werden durch vollstiindiges 
Abz~ihlen ausgewertet und als eine exakte Referenz zum fJberpriifen analytischer Resultate aus 
mathematischen Modellen sowie zum Testen statistisch erhobener Proben verwendet. Einige neuartige 
Konzepte zur Beschreibung tier Beziehungen zwischen Sequenzen und Strukturen werden eingehend 
untersucht, unter ihnen der Begriff der neutralen Netzwerke. Ein neutrales Netzwerk besteht aus allen 
Sequenzen, die eine bestimmte Struktur ausbilden. Vollst~indiges Abz/ihlen erm6glicht beispielsweise 
die Bestimmung aller Strukturen minimaler freier Energie in Abh~ngigkeit von der KettenRinge ebenso 
wie die Bestimmung tier Hiiufigkeitsverteilungen der Strukturen bei konstanten Kettenl~ingen. Die 
letzteren folgen einer verallgemeinerten Form Zipfschen Gesetzes. 
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1. Introduction 

Conventional biophysics considers sequence structure relations of biopolymers 
primarily with respect to the folding problem: given is a sequence; which structure 
does it form under the specified experimental conditions? Such a condition is, for 
example, the thermodynamic equilibrium for minimum free energy structures. 
Kinetically determined structures correspond to the outcome of the folding process 
under certain conditions. Many problems in current molecular biology and biotech- 
nology [1], however, raise questions that cannot be answered satisfactorily by this 
approach. Required is instead a different view that considers the set of all (possible) 
sequences as an entity which is mapped onto the set of all (possible) structures. Such 
problems are, for example, the sensitivitiy of structures against mutations in the 
underlying sequences [2], the influence of nucleotide distributions (%A, %U, %G, 
%C) on structures [2, 3-], as well as the inverse folding problem: given is a RNA 
secondary structure; which sequences do fold into this structure under the specified 
conditions [4, 5-]? 

The evolution of RNA molecules in replication assays, viroids, and RNA viruses 
can be viewed as an adaptation process on a fitness landscape in the sense of Sewall 
Wright's imagination [6]. The dynamics of evolution is thus tightly linked to the 
structure of an underlying landscape. Global features of landscapes can be described 
by statistical measures like numbers of optima, lengths of walks, and correlation 
functions (see for example Refs. I-7, 8, 3, 9]). Statistical characteristics of RNA 
landscapes are accessible on the level of secondary structures by mathematical 
analysis and computer calculations: these RNA landscapes belong to the same class 
as well known optimization problems and simple spin glass models 1-5, 10-]. 

The notion of a landscape has been extended to combinatory maps, thereby 
allowing for a direct statistical investigation of the sequence structure relationships 
of RNA at the level of secondary structures [-2, 5]. Extensive computational studies 
have revealed that the frequencies of structures are highly non-uniform, that 
sequences sharing the same structure are distributed randomly over sequence space, 
that there exist neutral paths in sequence space along which structures remain 
uneffected by mutations, and that any desired secondary structure is formed by 
sequences that can be found close to an arbitrary initial sequence. These results 
provide convincing evidence that RNA landscapes are as simple as they could 
possibly be for evolutionary adaptation. The consequences for evolutionary opti- 
mization, the early stages of life, and molecular biotechnology are immediate. Based 
on these findings, a random-graph theory was developed [-11] that explains the 
structure of neutral networks in terms of a single parameter: the frequency of neutral 
mutations. The predictions of this theory, among them connectedness and density of 
the neutral networks, cannot be verified by a statistical approach based on sampling 
tiny fractions of sequence space. Comparison of the results derived from the random 
graph approach with real RNA folding data allows to separate generic properties of 
sequence of structure mappings from nucleotide specific biochemical phenomena. 

In this contribution we report the computational techniques that are necessary 
to exhaustively generate all sequences and their secondary structures for two-letter 
alphabets up to a chain length of n = 30. In essence, the main task is easily stated: 
compute the secondary structures of all sequences and then group together the 
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sequences that fold into the same secondary structure, i.e., produce an explicit 
representation of all neutral networks. Once this has been done, the analysis 
proceeds by determining the geometric structure of these networks. 

This paper is organized as follows: in section 2, we review the folding algorithm 
and the data structures used to represent RNA structures. In section 3, we present 
data obtained directly from the exhaustive search, such as the overall number of 
different minimum free energy structures, the fraction of open structures, and the 
distribution of preimage sizes. Criteria will be derived that allow to distinguish 
common and rare structures. 

In a forthcoming paper [12] we shall analyze and discuss the internal structures 
of neutral networks, is particular the size distributions of their connected compo- 
nents. In addition, relative locations of neutral networks will be discussed and strong 
evidence will be presented for shape space covering: almost all common structures 
can be found within a fairly small ball around any random sequence. The results are 
particularly valuable for a comparison of real data with the results of the random 
graph approach. 

2. RNA Secondary Structures 

2.1. RNA Foldin9 

The biochemical and biophysical properties of RNA molecules are determined by 
their spatial structures. In case of RNA, the process of folding the one-dimensional 
primary structure (sequence) into the three dimensional tertiary structure can be 
decomposed into two steps: 

(1) Folding of the sequence into a secondary structure by formation of complement- 
ary Watson-Crick base pairs, G = C and A=U, and the weaker G U pairs. 

(2) Formation of the three-dimensional tertiary structure from the planar pattern. 

Such a decomposition is meaningful since the intramolecular forces stabilizing the 
secondary structures - base pairing and base pair stacking - are much stronger than 
those accounting for arrangement of the secondary structure elements in space. 
Thus, the free energy of formation for the three-dimensional structure can be 
estimated by the free energy of the formation for the secondary structure. The 
dominant  role of secondary structures is also well documented in nature since 
secondary structure elements are conserved in evolution [13, 14, 15, 16]. 

A variety of computer programs predicting RNA secondary structures have been 
published. A very brief overview is given in Table 1. Two public domain packages for 
RNA folding are currently available by anonymous f t p :  Zuker's i n f o l d  [25] and 
the Vienna RNA Package [26]. All these programs make use of essentially the 
same energy model for the formation of secondary structures. It explicitly assumes 
that there are no knots or pseudo-knots. 

Each secondary structure is viewed as being composed of stacked base pairs, 
loops, and external elements which are neither part of a stack nor of a loop. For the 
sake of a uniform notation, two stacked base pairs can be viewed formally as 
a special type of loop consisting of exactly four nucleotides. Depending on the 
topology of the loop, one distinguishes different loop types: hairpin loops have only 
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Table 1. Folding algorithms for RNA secondary structures 

Algorithm ¢ Abbr. Remark Reference 

determinis t ic  

Minimum Free Energy - M F E  fast [17, 18] 
Kinetic Folding + K I N  fast [19] 
5'-3'  Folding + 5 3 fast [20] 
Partition Function - P F  ensemble [21] 
Maximum Matching - M M  unrealistic [22] 
stochast ic  

Simulated Annealing + S A  very slow [23, 24] 

P s e u d o - k n o t s  can be included; the major problem with the prediction of 
pseudo-knots is, however, the lack of sufficient experimental energy parameters 

one base pair, stacked base pairs consist of exactly two base pairs, bulges have two 
base pairs adjacent to each other and at least one unpaired base, interior loops have 
two base pairs which are not adjacent to each other, and multi-loops contain at least 
three base pairs (see Fig. 1). The energy of a secondary structure is the sum of energy 
contributions of all loops in the structure. These contributions depend on the loop 
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Fig. 1. RNA secondary structures can be decomposed into loops and external elements; the energy of 
a particular structure is the sum of energy contributions for all its loops 



RNA Structure: Neutral Networks 359 

type, the loop size, and partly on the particular sequence of nucleotides in the loop. 
The individual energy parameters were determined experimentally (see e.g. Refs. 
[27, 28, 29]). While the prediction of the folding algorithm for a particular sequence 
depends strongly on the details of the parameter set, such details do not affect the 
global features of the sequence structure relations [30]. 

The data used in this contribution have been produced with the f o l d ( )  
algorithm contained in the v i e n n a  RNA P a c k a g e  [26]. It is based on a high 
performance implementation [-31 ] of the Zuker-Sankoff algorithm [- 17]. The energy 
parameters used in this package are an updated version of [29] provided by Danielle 
Konings [32]. 

2.2. Representation of Secondary Structures 

RNA secondary structures are commonly drawn as secondary structure 9raphs in the 
biochemical literature. Equivalently, though less intuitively, circle plots are used 
sometimes. Therein, the sequence is arranged in a circle, and base pairs are indicated 
as chords connecting the pairing nucleotides. The non (pseudo)knot condition 
implies that chords do not intersect in this representation. A number of equivalent 
representations have been developed for special applications. Secondary structures 
can be translated into rooted planar trees by mapping base pairs to internal nodes 
and unpaired nucleotides to leaves [2] (This tree representation is equivalent to 
a mountain representation [33] obtained by indicating a nucleotide which is paired 
with a base towards the 3' end by a positive slope, a base with pairing partner to the 5' 
end by a negative slope, and an unpaired base by horizontal line segment). Both the 
tree representation and the mountain representation have been used for comparing 
secondary structures and for computing similarity measures between different 
secondary structures [15, 34]. 

The tree and the mountain representation are equivalent to a string representa- 
tion. A base paired with a partner towards the 3'-end is denoted by '(', a nucleotide 
pairing with a partner towards the 5'-end by ')', and '.' is used for representing 
unpaired positions. Each secondary structure is then uniquely determined by 
a string of length n taken from the alphabet '.0'. Not all strings formed from this 
alphabet are valid secondary structures: biophysical constraints require that a 
hairpin loop contains at least three unpaired bases and that each open bracket 
has to be matched by a closed bracket. It is easy to see that the set of all valid 
secondary structures of chain length n _> 3 is in fact generated by the context free 
grammar 

G:S ~',.. 'I ' . 'SIS'. 'ISSI'('S')' ,  

This representation is used for I/O in the v i e n n a  RNA P a c k a g e .  It is also used in 
this contribution. Given a string like '((...).)', its parse according to the grammar 
G uniquely determines pairs of matching parentheses. Similar grammars are used 
for modeling tRNA structure families in [35, 36]. Relating some sequence x to 
some structure s, we call xi, x~ to be in contact or matched '('- and ')'-positions when 
the positions i andj  are a base-pair in s, i.e. they correspond to matching parentheses 
in s. 
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2.3. Foldin9 as a Combinatory Map 

Natural RNA sequences are strings of length n over the alphabet {G,C,A,U}. 
The canonical distance measure between two sequences of equal length n is 
Hammin9 distance [-37] counting the positions in which to end-to-end aligned 
sequences differ. 

The relation between sequences and structures is mediated by a folding algo- 
rithm (see above), in our case the routine f o l d  ( ) of the V i e n n a  RNA P a c k a g e .  In 
the remainder of this paper we will write f (x)  instead of f o l d ( x ) .  The biological 
question of sequence-structure relations translates into the mathematical question 
of determining properties of the mapping 

where 9"~ is the generalized hypercube (Hammin9 graph) of dimension n over an 
alphabet of size ~ and H, is the shape space of all secondary structures of length n. The 
shape space can be viewed as metric space by either using the trivial metric or one of 
the distance measures based on the tree representation or mountain representation 
of secondary structures. 

The term combinatory map was introduced for mappings from a discrete con- 
figuration space into some metric space as a generalization of the notion of 
a landscape [-9]. It is clear that the folding map f is not necessarily injective, since 
there are less than 3" secondary structures as compared to 4" sequences. From the 
structure statistics given in [2] it follows immediately that f is not onto in general: 
structures, as derived from the grammar G, typically contain many isolated (non- 
stacked) base pairs. Consequently, the preimage f - l ( s ) ,  i.e., the set of all sequences 
actually folding into s, will be in general a fairly large set. The structure statistics 
indicates, however, that only a vanishingly small fraction of all secondary structures 
obtained from folding contains isolated base pairs [2]. Consequently, the image of 
the sequence space, f ( ~ ) ,  will in general be a proper subset of H,. 

The obvious questions to ask about f are thus the following 

• How large is the image of sequence space f(~")? 
• How large are the preimages of given structures? 
• What is the distribution of preimage sizes? 
• How many sequences do not form secondary structures, i.e., how large is the 

preimage of the open structure? 
• How is f -  l(s) embedded in sequence space? 

Many of these questions have been at least partially answered in previous papers 
describing non-exhaustive computer simulations [3, 9, 2, 5, 10, 4], as mentioned in 
the introduction. Based on these results, a random graph model [11] was conceived 
that allows to construct the preimages of a (given) secondary structures s as functions 
of a single parameter, the (average) fraction of neutral neighbors of the sequences 
folding into s (see the section on neutral networks below). 

The random graph model reveals the generic properties of sequence to 
structure mappings based on base pairing. It is based merely on the existence of 
some definitions of legal pairings that need not be the complementary pairs 
(preferential AA or GG pairs as observed in homo-DNA [38] would be equally 
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acceptable). The exhaustive enumeration date presented here can be used to check 
the predictions of the random graph model, and they may help to detect and 
interpret systematic deviations of data obtained by RNA folding from this idealized 
reference. 

2.4. Compatibility of Sequences with Structures 

The mere notion of base pairing implies an a priori relation between sequences and 
structures which depends only on the legal base pairs in a given alphabet, but which 
is completely independent of the particular values of the energy parameters. For 
instance, the legal base pairs in the natural AUGC alphabet are AU, UA, GC, CG, 
GU, and UG. Note that we neglect non-standard pairings such as AA, GA, AG, or 
UU which have been observed in natural RNA structures [39, 40, 41, 42]. 

Definition: A sequence x is compatible with the seconadry structure s if (x~, x j) is 
a legal base pair for all matched '('- and' )'-positions i and j [11]. Given 
a secondary structure s, we shall denote the set of all compatible sequences by 
C[s]. 

Of course, the mere fact that xeC[s]  does by no means imply that f (x)  = s, i.e., that 
x really folds into the secondary structure s. Trivially, however, we have 
f -  l(s) _ C[s], i.e., all sequences folding into a given secondary structure have to be 
compatible with it. The notion of compatible sequences is essential for any deeper 
understanding of sequence structure relationships in RNA. 

2.5. Neutral Networks 

2.5.1. Rearrangin9 the set of compatible sequences: Since our main interest is the 
representation of f - l ( s )  in sequence space, let us first consider the geometry of the 
sets C [s] of compatible sequences in the sequence space ~ .  The structure of CI-s] is 
complicated by the difference between paired and unpaired positions. CEs] does not 
in general give rise to a connected subgraph of sequence space, but decomposes into 
hyperplanes which are characterized by a particular choice of the base pairs at paired 
positions. "Neighboring" hyperplanes have either Hammin9 distance d~ = 1, for 
instance if GC is replaced by GU, or Hammin9 distance dH = 2 if GC is replaced by 
any other legal pairing (AU, UA, CG, UG). Note that GC --. GU ~ AU gives rise to 
three hyperplanes which are connected with each other! 

Allowing for both point mutations and base pair exchanges redefines the 
neighborhood relations in C[s] by introducing new edges. We shall denote this 
graph by Cg[s]. It is clearly connected. In the following we will examine its structure 
in detail. Given a secondary structure s, a sequence x~Cg[s -] has any one of the 
c~ letters at each position i for which i+-*'.', whereas positionsj and k corresponding to 
matching brackets '(' and ')' are positions that are occupied by any one of the/3 legal 
base pairs. Thus, a sequence x~Cg[s] can be represented by the nucleotides in its 
unpaired positions, and the encoding base pairs in terms of letters from an alphabet 
of size/3 at the positions of the open brackets. All letters at the closed brackets can 
then be deleted. An example is given in Fig. 2. 
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. ( ( ( ( ( ( . . . ) ) ) . . . ) ) ) .  

CGCCGGCGGCGCCCGGGGCC 

COIIOOIGGC___CGG___C 

I011OO1001___I00___I 

10110010011001 

. ( ( ( ( ( ( . . . ) ) ) . . . ) ) ) .  

AUGGGUCUCCGACAGUCCGG 

A5OOO31UCC _ AGU G 

2500031311___203___0 

25000313112030 

structure 

sequence 

base pairs reduced 

unpaired bases reduced 

reduced sequence 

W. Griiner et al. 

G=0 C=l A=2 U=3 

GC=0 CG=I AU=2 UA=3 GU=4 UG=5 

Fig. 2. The effect of procedure  r e d u c e  

Later in this paper  we will make  use of the procedure r e d u c e  performing this 
contract ion of the sequence: 

reduce(s,") = ", 

reduce(s,'.'x) = '.'reduce(s, x), 

reduce(s,'('x) = '('reduce(s, x), and 

reduce(s,')'x) : reduce(s, x). 

Given the reduced sequence and the structure, one can of course reconstruct  the 
original sequence. In fact, it is easy to write a function e x p a n d  such that  

expand(s, reduce(s, x)) = x 

for all s ~  and all x~C[s] .  
Reduced strings can be rearranged further: we first write the u unpaired posit ions 

and then the p base pairs (n = u + 2p). Thus, we can interpret r e d u c e ( s , x )  as an 
element of the direct p roduct  space 9~ x 9~, i.e., Cg[s] is isomorphic  to the product  of 
two Hamming graphs with possibly distinct alphabets which correspond to the 
unpaired and paired positions, respectively. As an immediate  consequence of these 
considerations we note the following 

Lemma: Let x,y~C[s]. The graphical distance of x and y in the graph Cg[s] 
coincides with the Hamming distance of their reduced representations: 

de(x , y) = d u ( r e d u c e ( s ,  x), r e d u c e ( s ,  y)). 

In particular, there is an edge in the graph ~f[s] if and only if 

dR( r educe ( s ,  x), r e d u c e ( s ,  y)) = 1. 

Using reduced sequences provides two advantages: 

(1) The storage requirements are reduced. We can represent the preimage f - l ( s )  
now as the pair (s, X), where X is the list of all reduced sequences folding into s. 
Note  that  the length of a reduced sequence is 

I r e d u c e ( s ,  x)l = u + p = n -- p. 
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In the case of the GC alphabet, this reduces the memory requirements by about 
25%. 

(2) Comparison of two sequences is more efficient, again because the representa- 
tions is shorter. 

(3) The distance between two sequences can be computed very efficiently since it 
coincides with their Hamming distance by the above lemma. 

2.5.2. Definition of neutral networks: Mutations which do not affect the fitness of an 
organism are called neutral in biology. By the same token, the term neutral is used in 
the context of RNA to mean mutations which do not alter the (secondary) structure. 
Hence, f - l(s) contains all the sequences which can be considered as neutral mutants 
of each other. 

Definition: The set f -  l(s) considered as an induced subgraph of Cg[s] is called 
the neutral network, ~#(s), of the secondary structure s. 

The motivation of the term "network" will become clear later on. Defining ~A/~(s) as 
induced subgraph of Cg[s], rather than as induced subgraph of the sequence space 
Q~ itself, avoids the peculiarities introduced by the logic of base pairing. On the other 
hand, the neighborhood relation no longer coincides with the action of mutation. 
Hence we have traded technical tractability for biophysical interpretation. 

The most important  characteristic of a neutral network X(s)  is its connectivity. 
In order to retain as much biologically relevant information as possible, we consider 
the unpaired and the paired part of the sequence separately and define 2,(s) and 2p(s) 
as the average fraction of neutral mutations in Q~ and Q~, respectively. 

2.5.3. Neutral networks of R N A  secondary structures: Let us briefly summarize the 
properties of the neutral networks of RNA minimum free energy structures. 

• The distribution of preimage sizes follows roughly a so called generalized Zipf's 
law, i.e., their rank-order statistics follows a distribution function of the form 

q~(r) = A(1 + r/B) -~ 

where r is the rank-order of a structure, q~(r) its frequency, A gives the abundance of 
the most frequent structures, B > 0 measures the number of"frequent" structures, 
and 7 > 1 determines the shape of the power-law tail [5]. 

• A neutral path is a path {Xo, xD.. .  , xl} in ~#(s) such that d~(xo, xt) = f, i.e., a neutral 
path if obtained by selecting a start sequence x o folding into s and then successive- 
ly choosing neutral neighbors in a such a way that the (graphical) distance to the 
starting sequence is increased with each accepted step. The length ( of a neutral 
path is therefore a lower boundary on the diameter of the neutral network ##(s). 
Computer  studies based on RNA folding have shown that the average values of 

are much larger than the distance between randomly chosen sequences for all 
common structures. A precise definition of a common structure will be given 
below (see 3.2). In this sense, the neutral networks of common sequences reach 
through all of sequence space, or more precisely, the set of compatible sequences. 
[5, 30]. 
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• Inverse folding provides a means of estimating the distance from a random 
sequence to the nearest sequence folding into a desired target structure s. One finds 
that sequence space is covered with fairly small balls each of which contains 
almost all common structures. The radius R of these balls is only slightly larger 
than the average distance from a random sequence to the set of compatible 
sequences for any common structure s. This property has been termed shape space 
covering in [5]. 

• The connectivities 2p and 2u become constant for large n when averaged over large 
samples of randomly chosen sequences [11], i.e., RNA sequence-structure maps 
are characterized by a very high degree of neutrality. 

2.5.4. Random graph theory of neutral networks: The findings from the computa- 
tional studies as listed above prompted us to search for a generic statistical model 
(with as few parameters as possible) that could explain the data. As a first step, we 
have recently proposed a random graph model explaining structures and properties 
of individual neutral networks [111. 

As already stated, (g[s] is the direct product of the hypercubes ~ x ~ and 
proceeds by constructing random subgraphs in each of the graphs ~ ,  ~.~ separately. 
This is done by selecting each vertex of ~.~, ~ with independent probabilities 2 u and 
2p. Here "vertex in ~"" means the "unpaired" part of the sequence x and "vertex in 
~.~" means the "paired" part of the sequence x (that is compatible with s). 

Thereby one obtains randomly induced subgraphs F, < ~ ,  Fp < ~ and the 
neutral network d [ s ]  is given by 

~V~[S] =def F .  x Fp. 

The random graph approach does not deal with specific biochemical or biophysical 
features of the folding process by doing two random selections, one for the unpaired 
part of a sequence and the other for the paired part. A sequence folds into s with 
probability 2, x 2p. However, the basic parameters have a biochemical interpreta- 
tion, namely to be for the "unpaired" part the expected fraction of neutral sequences 
in Hamming distance one and for the "paired" part the fraction of neutral neighbors 
for simultaneous base pair exchanges. In other words, the parameters reflect the 
stability of the structure s under point mutations in the "unpaired region" and base 
pair exchanges (i.e., mutations that preserve compatibility) in the "paired regions". 

The theory of randomly induced subgraphs of sequence spaces predicts that, in 
the limit of long sequences, there exists a critical value 2* such that a neutral network 
is a dense and connected subgraph of c~ Is] if 2 > 2*. A subgraph G of a finite graph 
H(G < H) is dense in H if and only if each vertex of H is either in G or has at least 
a neighbor in G. Neutral networks show a typical percolation phenomenon in 
sequence space. Moreover, for all 2,, )~p > 0 there exists a so called giant component in 
the limit of long sequences, i.e. most of the sequences are pariwise connected in Cg[s]. 

u p Conversely, the network is (in its projections ~ ,  ~ )  neither dense nor connected if its 
2-value is below the critical value. A later and refined version takes into account the 
different connectivities for unpaired and paired positions. Table 2 compiles the 
critical connectivities for the two variants of the random graph model as well as for 
sequences from different alphabets. The predictions of the random graph model 
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Table 2. Asymptotic values for the fractions of neutral neighbors )~. and 2 v 
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Model I Model II Alphabet RNA Structures 

2, )~* 2* = 2* unpaired paired 

2 0.5 0.2929 0.5 GC 0.271 0.436 
AU 0.352 0.495 

4 0 .3700 0.2063 0.3700 GCXK 0.479 0.509 
GCAU 0.495 

6 0.3011 0 .1640 0.3011 GCAU 0.455 

concerning the connectivity or percolation problem and the density of subgraphs 
were checked by exhaustive ennumeration.  The data shown in Table 2 indicate - in 
full agreement with previous studies [ 1 ] -  that neutral networks of structures 
formed by GC-sequences are more likely to fall below the percolation threshold than 
those derived from AU- or AUGC-sequences.  

3. Exhaustive Enumeration of Secondary Structures 

3.1. Folded Secondary Structures 

3.1.1. An upper bound to the number of folded structures: Of course, the number  of 
folded secondary structures cannot  exceed the number  S. of possible seconary 
structures. Sn can be calculated from the simple recursion 

n - 2  

Sn=Sn-1 "~ 2 SkSn-k-2; n>_m+ 1; S o = S  1 . . . . .  Sm+l = 1 
k=m 

where m is the minimum number  of unpaired digits and which follows directly from 
the grammer G (see Ref. [-43]). In the biophysically relevant case m = 3, the asym- 
ptotics of S. are given by 

SEn 11 ~ 0.7131 x n-3/2(2.2888)" 

As mentioned above, isolated base pairs are extremely rare in folded secondary 
structures. Hence, a better estimate can be obtained by counting the number  of 
secondary structures S~ 21 which do not contain isolated base pairs, i.e., all base pairs 
are contained in stems of length at least two. A recursion and an asymptotic 
expression for this series was recently derived [44]. It turns out that St, 21 is 
significantly smaller than 2 ". 

SEn z l~  1.4848 x n-3/2(1.8488)n 

Most  structures counted this way still exhibit much shorter helices than average 
folded structures. We expect therefore that S~ 21 still overestimates the number  of 
folded secondary structures. 
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Table 3. Lower bound on the number  of folded structures 

Alphabet e fl Po r = (c~z/fl) p° 

GC 2 2 0.403 1.322 

A U  2 2 0.403 1.278 

A U G C  4 6 0.290 1.329 

A U G C  + 4 4 0.207 1.332 

GCXK" 4 4 0.270 1.453 

A B C D E F  a 6 6 0.185 1.393 

+ G U  pairs suppressed; a these artificial alphabets contain two 

(three) complementary base pairs with identical energy parameters 

W. Griiner et al. 

3.1.2. A lower bound to the number of folded structures: A non-trivial lower bound 
can be obtained from estimating the size of the set of sequences compatible to a given 
structure s. Indeed, we know that 50% of all sequences fold into structures with at 
least pon base pairs, where Po is some constant with 0 < Po < 1 independent of n (see 
Ref. [-2-]). Therefore, 50% of the c~" sequences fold into structures which have 
compatible sequences of size at most 

k~2/  

where fi < 0~ 2 is the number of differet legal base pairs in the given alphabet. 
Even if all sequences in C Is] would fold into the same structure, and if all 

compatible sequences were disjoint 1, there must be at least 

different secondary structures. Numerical estimates for Po can be obtained from the 
data for the average number of base pairs in folded secondary structures [9] (see 
Table 3). The number of base pairs is concentrated around pon for large n.Even if 
mean and median would differ significantly in this distribution, it would only lead to 
(minor) correction of the pre-factor 1/2 without affecting the exponential part of the 
bound 1.b. Sn • It is interesting to note that r = (e2/fl)po does not strongly depend on the 
alphabet. Just as the upper bound discussed in the previous subsection, this lower 
bound is far from being sharp as well. 

3.1.3. Exhaustive structure generation: Because of the intractably larger numbers of 
sequences over alphabets with more than ~ = 2 letters, we restrict our numerical 
investigations to two letter alphabets. We choose two examples (GC and AU). In the 
latter case, the data are expected to reflect the short-sequence effects much stronger 

1 It was in fact shown that the opposite is true [11]: The compatible sets of any two secondary 

structures have a non-empty intersection. 
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because the energy parameters of A U  base pairs are such that sequences of tractable 
length are very likely to be unfolded. 

The sequences are generated in collections of five million sequences and their 
respective complements each. The sequences are folded using f o l d  ( ) and then 
grouped according to their structures. After a section is completed, all sequences 
x folding into the secondary structures are appended to the UNIX file F ILE (s). 
Sequences are stored in 32-bit machine words, with 0 and 1 replacing G and C, 
respectively. This method of storage, which limits the sequence length to  32, does not 
restrict the approach in praxis, since a length of n = 32 is already above the limits of 
both  the accessible C P U  resources and accessible storage capacities. In fact, the 
longest R N A  molecules we have investigated have a chain length of n = 30. This 
computat ion required about  130 days of C P U  time on an IBM RISC 6000 
workstat ion with 256 MB RAM, and more than 4.3 GB of disc space. 

The bound  on the number  of secondary structures were important  for organizing 
the disc storage of the data. In the worst  case, the upper boundary  given above leads 
us to expect about  a million different secondary structures for n -- 30. This is by far 
more than the number  of files that can be contained in a single directory of the UNIX 
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Fig. 3. Numbers of structures and abundance of the open structure obtained by exhaustive enumer- 
ation computed for GC (e) and AU (D) alphabets; numbers of structures [Yl are presented as functions 
of the chain length (above); the fractions of sequences that fold into the open structure are shown on the 
next page 
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file systems on our workstations.  In order to overcome this restriction, the files are 
arranged in a hierarchical directory structure limiting the number  of files per 
subdirectory to about  1000. For  n = 30, this directory structure alone occupies about  
15.6 MB of disc space. 

3.2. Numerical Estimates from Exhaustive Enumeration 

3.2.1. The number of  minimum free energy structures: The upper  and lower bounds  
on the number  of secondary structures which we have discussed in the previous 
sections have been based on fairly crude estimates. Much  more  accurate estimates 
for the actual number  of different structures that  are realized by a particular folding 
algori thm can be obtained by extrapolat ion from exhaustive counts  for short  chains. 

Linear regressions of a log SM, vE vs. n plot of the data  shown in Fig. 3 yields the 
following estimates: 

S, MFE ,-~ (0.0853 + 0.0009) x (1.6360 + 0.0007)" for GC 

S~ rE ,,~ (0.0097 + 0.0038) x (1.489 _+ 0.029)" for AU 

The estimate is quite good for the GC alphabet,  whereas for the AU alphabet  finite 
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Table 4. Common structures and their preimages 
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GC AU 

n IJI r~ n~ lYl  r~ n~ 

7 2 1 120 1 1 * 
8 3 1 224 1 1 * 
9 6 1 371 1 1 * 

10 11 4 859 1 1 * 
11 20 7 1,648 1 1 * 
12 31 13 3,502 1 1 * 
13 48 22 7,384 1 1 * 
14 73 31 14,657 1 1 * 
15 116 43 28,935 2 1 32,256 
16 195 64 58,886 4 1 63,488 
17 340 86 115,140 8 1 123,960 
18 582 117 224,713 14 1 238,366 

19 973 183 450,802 23 1 456,964 
20 1,610 286 902,918 35 1 875,710 
21 2,615 461 1,826,514 50 1 1,673,596 
22 4,258 752 3,716,134 68 1 3,185,872 
23 6,936 1,202 7,547,362 90 3 6,262,203 
24 11,348 1,866 15,246, 819 120 3 11,836,758 
25 18,590 2,869 30,745, 861 164 16 25,037,770 
26 30,501 4,302 61,716,291 232 21 48,789,050 
27 49,949 6,372 123,634,231 341 42 101,387,602 
28 81,748 9,579 247,907,264 490 76 213,394,592 
29 133,782 14,641 497,595,288 - 

30 218,820 22,718 999,508,805 1064 192 936,240,694 

* All sequences fold into the open structure 

size effects seem to dominate.  This is due to the weaker base pairs which leave a large 
fraction of the sequences unfolded in their m i n i m u m  free energy structure. The exact 
numbers  of different structures can be found in Table 4. 

The abundance  of open structures (of the type '. . . . . .  ') is therefore a good  
indicator for the influence of finite size effects. For  GC, we find a distinct exponential  
decrease in the fraction of sequences that  do not  form base pairs (see Fig. 3). In the 
AU case, almost  half of the sequences with a chain length of n = 30 or shorter do not  
form base pairs. Consequently,  we cannot  expect reliable estimates for the asym- 
ptotics of S~ FE in this case. We find indeed that  S~ FE is much  smaller for both  
alphabets than the combinator ia l  estimate discussed in 3.1.1. 

3.2.2. Common structures 

Definition: A s t r u c t u r e  s is s a i d  to  b e  common if i t s  p r e i m a g e  f - l(s) is n o t  s m a l l e r  

t h a n  t h e  a v e r a g e  size o f  a n e u t r a l  n e t w o r k  [1 ] ,  t h a t  is in  m a t h e m a t i c a l  n o t a t i o n ,  if  

I f - l ( s ) l > s  I f - l (s ' ) l  I ~ l '  
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decrease with increasing chain length, whereas the chain length dependence of nc/~c" = v (next page) 

strongly indicates convergence towards l im,~ ~o v = 1 

Furthermore,  let r C denote the rank of the rarest common structure, i.e., the structure 
with rank rc is common,  but  the structure with rank r c + 1 is not common. 

The number  of sequences that fold into common structures, n~, is listed in Table 4. 
Two quantities are of particular interest: the fraction rJlSel of common struc- 
tures within the set 5 P of all structures that are obtained by folding (Fig. 4, above), and 
the fraction njc~" of sequences that fold into common structures (Fig. 4, next page). 

The fraction of common structures among all minimum free energy structures 
decreases with chain length. The data for the GC alphabet are consistent with an 
asymptotically exponential decrease of rim 5PI • The data for the AU alphabet exhibit 
a minimum at n = 22. A trend for long sequences, however, cannot  be read off the 
data. In analogy to the results for GC sequences and based on the Zipf 's  law 
type distribution of preimage sizes, we expect that r JR 5 P [ approaches 0 as n becomes 
large. 

The fraction of sequences that fold into common structures slowly increases in 
the case of GC sequences; for n = 30, we have nc/23° ~ 0.931, i.e., less than 7% of all 
sequences fold into non-common structures. For  A U  we find a minimum at n = 24 



R N A  Structure: Neut ra l  Ne tworks  371 

1.00 . . . .  , 

0.95 

0.90 

> 0.85 

0.80 

0.75 

0 . 7 0  i r , 

5 

Fig. 4. (Contd) 

° 

iD 

r n  

' , ,  

0 

/ 

~ i rJ Q " 

$ 

c? 

[ ]  J 
O. • i 0 

• • ,,, ,, . ~,, 
; " , , . ,  ,,, 

' ; i  ° / '  

D 

i 
0 

i 
i ! 

t.O.O,O "a" 

/i// 

/ 

[3 
10 15 20 25 

chain length n 
30 

t i i _ 4 ~  - - -  i 

i0 -I ~ .~'I 

10 "a "~ 

t . )  c -  

g 10 .5 
U _  

10 .7 ~ 

10 .9 I I i I I 

10 ° 101 102 103 104 105 
R a n k  

Fig. 5. Distribution ofpreimage sizes for GC sequences of length 30; the dashed line is a fit to the model 
above using A = 0.00029, B = 7040, 7 = 2.93; the dot-dashed line is the integral over the distribution, the 
vertical line marks r~ = 22718 



372 w. Griiner et al. 

with about 70% of the sequences folding into common structures, and a steep 
increase of this fraction for longer chains. The data are consistent with the conjecture 
that asymptotically almost all sequences will fold into common structures. 

3.3. The Distribution of Preimage Sizes 

The distribution of preimage sizes has been studied previously for coarse grained 
structures on sequences up to length 100 by folding samples of several million 
random sequences [-5, 10]. These studies, which access the distribution of preimage 
sizes in the realm of common structures and the onset of the tail have suggested that 
the distribution follows a generalized Zipf's law [45, 46] which can be parameterized 
as q~(r) ~ A(1 + r/B) -~ with B > 0 and ? > 1 (see section 2.5.3). 

The exhaustive folding of the entire sequence space allows us to compare this 
model distribution with the actual rank-order statistics of RNA secondary struc- 
tures. We find qualitatively similar distributions with few frequent structures and 
a long tail of very rare structures. Quantitatively, the fit to the model function is 
rather poor, mostly because frequencies should be nearly constant at r ~ 0, i.e. the 
model function exhibits an even sharper transition from common to rare structures 
(Fig. 5). This may be partly a finite size effect, since the transition clearly becomes 
sharper with increasing chain length. Already at chain length 30 more than 93% of 
GC sequences fold into structures with r < r c = 22718, i.e. the most frequent 10% of 
structures. 

4. Conclusions 

Investigations of complete sets of RNA structures obtained by folding of all 
sequences of RNA molecules of given chain length n are usually prohibitive because 
of the hyperastronomically large numbers of sequences. The only known exceptions 
are the secondary structures formed by short sequences (n _< 30) derived from binary 
alphabets (GC and AU). In these cases, the numbers of sequences do not appreciably 
exceed 109, and there are less than a quarter of a million different structures. 
Creation of reference samples by exhaustive folding and retrieval of the desired 
informaton, nevertheless, requires special methodologies even in these cases with 
short chain lengths. Examples of problems that can be addressed by exhaustive 
enumeration are the elaboration of a clear definition of common for RNA secondary 
structures, the computation of the numbers of (minimum free energy) secondary 
structures for different base pairing alphabets as functions of the chain length, and 
the verification of a generalized form of Zipf's law for the frequency distribution of 
secondary structures at constant chain length. 

Different strengths of the interaction between bases (hydrogen bonding and base 
pair stacking) in the GC and AU system have a drastic influence on the numbers of 
minimum free energy structures as well as on the sizes and structures of neutral 
networks. The effect is twofold: 

(1) Weaker interactions in structures built from AU-only sequences make finite size 
effects (e.g. the influence of small chain lengths) more dominant. The fraction of 
the unfolded or open chain structure, for example, is much larger with AU-only 
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than with GC-only  sequences. In addition, the chain length of the shortest A U  
sequences that forms a non-trivial (folded) secondary structure is n = 15, whereas 
GC sequences form structures already at n = 7. Consequently, the number of 
different structures formed by GC sequences is much larger than the correspond- 
ing number  for A U  sequences of the same chain length. 

(2) Compared  to GC stacks, more base pairs are needed to form a stable A U  
stack. Hence, stacks are longer on the average in structures dominated by 
AU. This has the consequence that the number  of structures from A U  sequ- 
ences increases less strongly with the chain length (oc 1.49") than in the GC 
case (oc 1.69"). 

The definition of common structures introduced here is based on simple enumeration: 
a structure is common if it is formed by more sequences than a fictious average 
structure whose preimage size is C~"/Sn sequences. Extrapolation of data computed 
for different chain lengths suggest a general result that is highly relevant for 
biotechnology and evolution. The fraction of structures which are common de- 
creases (exponentially) with increasing chain length, whereas at the same time the 
fraction of sequences that fold into the common structures approaches unity. In 
other words, for long chains a relatively small fraction of all structures is formed by 
almost all sequences. Mos t  of the structures are thus rare in the sense that they are 
formed by relatively few sequences only; they will neither be found by natural 
evolution nor will play a role in the evolutionary biotechnology. The set of common 
structures thus forms the repertoire from which adaptive processes choose in vivo 

and in vitro. 
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